

Работа выполнена при поддержке Института Всемирного Банка совместно с Региональным Экологическим Центром Центральной Азии

РЕСПУБЛИКА ТАДЖИКИСТАН ТАДЖИКСКИЙ АГРАРНЫЙ УНИВЕРСИТЕТ ИМЕНИ Ш. ШОТЕМУР

ОТЧЕТ

по выполнению магистерской исследовательской работы на тему: Пути повышения плодородия и гидроаккумуляционной способности песчаных и супесчаных почв Таджикистана

Магистр: Нарзуллозода И.У.

Руководитель: к.т.н. - Пулатов Ш.Я

АКТУАЛЬНОСТЬ РАБОТЫ.

В настоящее время решение проблем рационального использования водно-земельных ресурсов, повышение их продуктивности и обеспечения экологической устойчивости орошаемого земледелия является актуальной задачей и приоритетным. В условиях бурного демографического роста (2,5% в год), дефицита водных ресурсов, малоземелья (0,09га на 1 чел.), аридного климата вопрос обеспечения продовольственной безопасности год за годом приобретает исключительное значение. Для улучшения структуры песчаных и супесчаных почв, а также для получения экологического чистого продукта нами предлагается взамен разных химических препаратов и минеральных удобрений вносить в почву бентонитовые глины как мелиоранта, которые богат микро и макро элементами. Это в нынешних условиях недостаточности и дороговизны традиционных видов минеральных удобрений, выгодно не только в получении высоких урожаев сельскохозяйственных культур, но и экономической эффективности достигаемой за счет их дешевизны доступности.

Следовательно, разработка технологии повышения равномерности увлажнения почвы при бороздковом поливе, особенно для песчаных и супесчаных почв, а также улучшение их структуры в положительную сторону т.е. повышение плодородие и гидроаккумуляционной способности весьма актуальна и своевременна для орошаемого земледелия Таджикистана.

ЦЕЛЬ ИССЛЕДОВАНИЙ.

Целью исследований является обеспечение равномерности увлажнения песчаных и супесчаных почв при бороздковом поливе хлопчатника и изменение её структуры в сторону их улучшения на основе совершенствования технологии полива путем применения бентонитовых глин на фоне дифференцированного глубокого рыхления в условиях Центрального Таджикистана.

ЗАДАЧА ИССЛЕДОВАНИЙ:

- усовершенствовать технологию бороздкового полива хлопчатника путем применения бентонитовых глин на хлопковом поле;
- определить основные водно-физические свойства почвы и изучить водопроницаемость песчаных и супесчаных почв;
- изучить влажности почвы, сроки и нормы поливов хлопчатника.
- изучить структуру водоподачи, равномерность увлажнения почвы при обычной технологии и технологии применения бентонита на фоне глубокого рыхления;
- изучить элементы техники полива при различных технологиях;
- изучить влияние технологии полива на рост, развитие и урожайность хлопчатника;
- оценить экономическую эффективность разработанной технологии орошения хлопчатника.

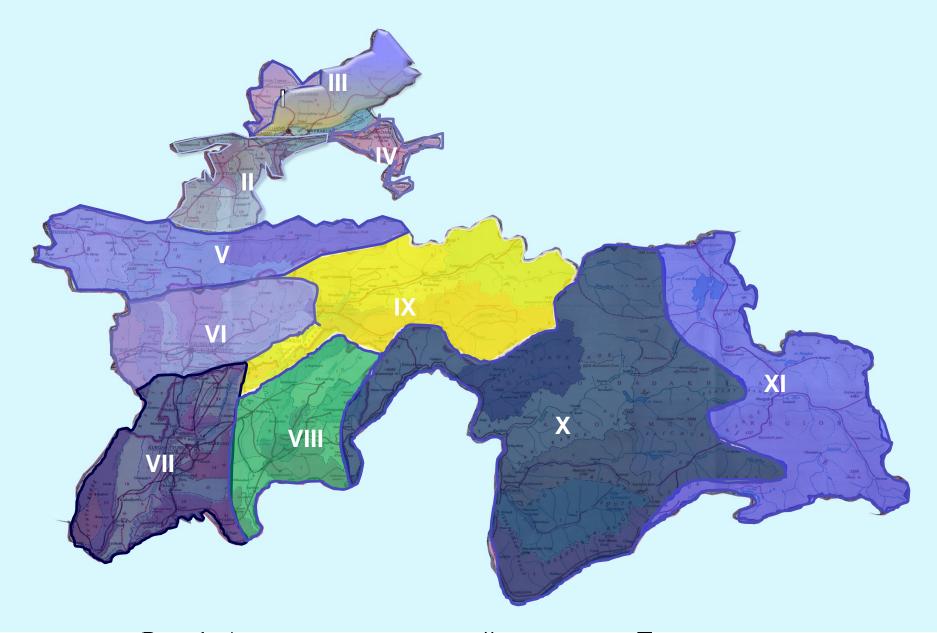


Рис. 1. Агроклиматическое районирование Таджикистана. Гиссарский агроклиматический район обозначен под № VI.

Основные климатические показатели Гиссарской долины

Годовая температура воздуха, ⁰С

Относительная влажность воздуха, %;

Атмосферные осадки,мм

Годовая испаряемость, мм

Отношение годовой испаряемости к сумме осадков

14,1-15,1

21.8 - 22.8

2192 - 2510

46 - 53

39 - 50

475 - 705

114 - 355

1311 - 1680

1016 - 1232

5

2.6 - 2.3

7.1 - 5.0

Климатические показатели Значения показателя 19 - 20Суточная амплитуда температуры воздуха за август сентябрь, ⁰С

среднегодовая

среднегодовая

сумма за год

сумма за год

сумма за год

за период апрель – сентябрь ⁰С

за период апрель- сентябрь

сумма за апрель – сентябрь

сумма за апрель – сентябрь

сумма за апрель – сентябрь

Сумма эффективных температур (выше 10° C), $^{\circ}$ C

Объект исследований. Исследования проводился на территории хозяйства «Самар» Гиссарского района (Центральный Таджикистан). От г.Душанбе до хозяйства 15 км. Объектом исследований служил супесчаные почвы с низким содержанием гумуса и питательных веществ, залегания уровни грунтовых вод ниже 5 м., уклон участка — 0,008. Была изучена технология орошения хлопчатника районированного сорта «Мехргон» при бороздковом способе полива. Сопоставлялись следующие технологии орошения хлопчатника:

Технология полива хлопчатника, принятая в хозяйстве (контроль);

Применением бентонитовых глин на фоне глубокого рыхления (дифференцированная глубина):

Фон 1. -1/3 начальная часть длины борозды – без рыхления;

Фон 2. -1/3 средняя часть длины борозды – рыхление на глубину 40см;

Фон 3. -1/3 концевая часть длины борозды – рыхление на глубину 60 см; Сроки и нормы проведения поливов хлопчатника приняты в соответствии с «Рекомендациями по режиму орошения сельскохозяйственных культур для Таджикской ССР» (Душанбе, 1988).

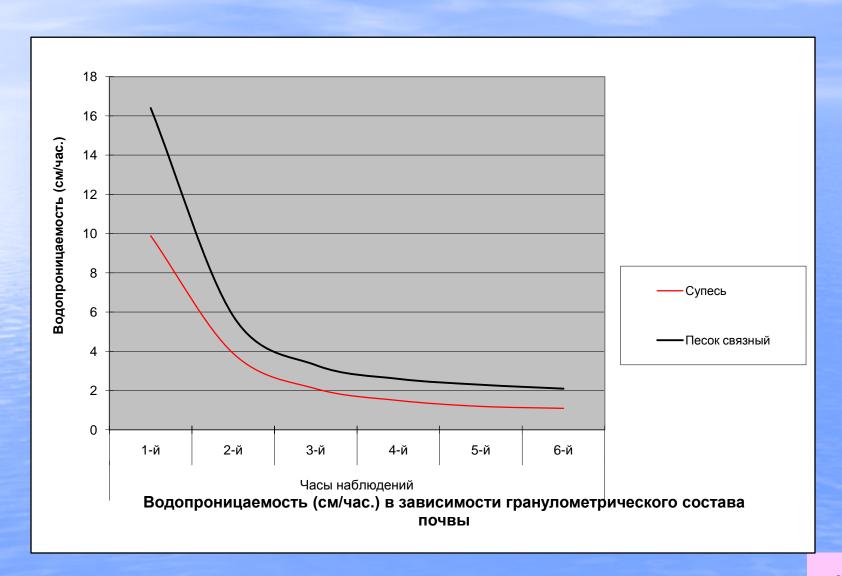
Повторность вариантов – четырехкратная. Каждая делянка состояла из 8 рядков, из них 4 средних рядка – учетные, остальные защитные. Общая площадь с учетом боковых защитных зон – 1га.

Бентонитовые глины были использованы из Гиссарского месторождения.

Способ создания влагозапаса в почве и достижение равномерного увлажнения корнеобитаемого слоя

1 участок – обычная вспашка (h=30 см.)

2 участок – глубокое рыхление (Н=40 см.) на фоне вспашки;


3 участок – глубокое рыхление (Н=60 см.) на фоне вспашки;

А и В – начало и конец борозды.

Основные водно-физические свойства почвы

Слой,	Содержание	Объемная масса, г/см ³	Удельная масса, г/см ³	Наименьшая влагоемкость	
СМ	частиц D < 0,01			% от массы абсолютно-сухой почвы	м ³ /га
0-10	19	1,17	2.65	19,5	228
10-20	18	1,34	2.68	18,7	251
20-30	20	1,40	2.69	18,5	259
30-40	18	1,43	2,70	17,9	256
40-50	19	1,44	2,68	17,4	251
50-60	19	1,47	2,71	16,1	237
60-70	22	1,49	2,70.	16,9	252
70-80	14	1,50	2,67	16,0	240
80-90	18	1,61	2,70	15,5	249
90-100	15	1,60	2,69	14,5	232
100-120	20	1,63	2,71	15,1	492
120-140	19	1,54	2,68	16,7	514
140-160	17	1,56	2,70	15,5	484
160-180	13	1,56	2,70	15,4	480
180-200	16	1,57	2,68	14,3	449
0-30	19,0	1,30	2,67	18,9	737
0-50	18,8	1,36	2,68	18,4	1251
0-70	19,4	1,39	2,69	17,8	1731
0-100	18,2	1,43	2,69	17,1	2445
0-200	17,9	1,48	2,59	16,5	4884

Водопроницаемость (см/час) в зависимости от гранулометрического состава почвы

Схема полива и оросительная норма для хлопчатника при различных технологиях

Варианты технологии	Схема полива	Оросительная норма, м ³ /га
Производственный полив (контроль)	0-2-2	7600
Поливы до влажности почвы 65-70-60% НВ на	2-4-1	6700
фоне глубокого рыхления		

Распределение оросительной нормы по периодам вегетации хлопчатника

Номер	Сроки полива		Колич.	Фактич.	Распределение оросительной		ельной
варианта			поли-	ороситель.	нормы по периодам,%		1,%
	Первого	Последн.	вов	ная норма,	всходы	цветение	созрева
				м ³ /га	цветение	созревание	ние
1	15.VI	1. IX	4	7600	_	45	55
2	1.VI	10.IX	7	6700	30	55	15

В зависимости от вариантов опыта оросительная норма в течение вегетации распределяется таким образом: на варианте традиционная технология, полив от всходов до цветения – 0 %; от цветения до раскрытия коробочек – 45%, а в период созревания – 55%; на варианте дифференцированного глубокого рыхления - 30; 55; 15 %, соответственно.


Изучение структуры водоподачи при поливах в условиях производства и опыта.

Показат	ели	Традиционная технология	Дифференцированное глубокое рыхление
Количество	поливов	7	7
Водоподача	$M^3/\Gamma a$	6700	6700
	%	100	100
В том числе	м ³ /га	3551	5628
из них: в почву:	%	53	84
Глубинный сброс	м ³ /га	1474	536
(ниже слоя 0- 100см	%	22	8
Испарение	м ³ /га	335	335
	%	5	5
Поверхностный	м ³ /га	1340	201
сброс	%	20	3
Общие потери м ³ /га		3149	1072
	%	47	16

Структура водоподачи при традиционной технологии

Структура водоподачи при дифференцированной глубине рыхления почвы

Элементы техники полива по бороздам при различных технологиях в условиях Центрального Таджикистана

Уклон участка	Длина	Поливная струя,	Сброс, %	КПД техники		
	борозды, м	л/с		полива		
	Tpa	адиционная технол	РИЛО			
0,008	205	0,1 -0,3	16,1	0,84		
		0,3-0,4	29,6	0,70		
		0,4-0,5	48,1	0,52		
Дифференцированная глубина рыхления+бентониты						
0,008	205	0,1 -0,3	7,4	0,93		
		0,3-0,4	15,5	0,84		
		0,4-0,5	26,1	0,73		

Зависимость поверхностного сброса от поливной струи

Влияние дифференцированного глубокого рыхления на урожай хлопка-сырца, т\га

Вариант опыта	Урожайность
1. Традиционная технология	3,18
2. Глубокое рыхление.	4,05
HCP ₀₅ , т/га	0,25
HCP _{05, %}	5,7

Расчет экономической эффективности возделывания хлопчатника при различных технологиях

	Урожай-	Стоимость	Прямые	Себестои-	Условно	Рента-
Вариант	ность,	продукции	Производствен-	мость	чистый	бель-
опыта	т/га	с 1 га,	ные	1кг,	доход, с	ность,
		долл. США	затраты на 1га,	долл.	1га,	%
			долл. США	США	долл.	
					США	
Традиционная технология	3,18	1971,6	1067	0,336	904,6	84,8
Глубокое рыхл.+бентон ит	4,05	2511	1136	0,281	1375	121,0

РЕКОМЕНДАЦИИ ПРОИЗВОДСТВУ

Предложен способ улучшения плодородии, гидроаккумуляционной способности, равномерности увлажнения почвы, снижения непроизводительных потерь воды и повышения урожайности хлопчатника, путем применения бентонитовых глин на фоне дифференциорованного глубокого рыхления песчаных и супесчаных почв Центрального Таджикистана. Для этого рекомендуются:

- Внести перед вспашкой орошаемого участка бентонитовую глину из расчета 4т/га., которое позволяет улучшить водно-физические и агрохимические свойства песчаных почв.
- Для обеспечения равномерного увлажнения корнеобитаемого слоя почвы по длине борозд и по всему полю, оптимальным влагозапасом, снижения непроизводительного сброса и повышения эффективности использования водно-земельных ресурсов при поливе по бороздам необходимо применить технологию дифференцированного глубокого рыхления почвы поперек поля с внесением бентонитовых глин. При этом 1/3 часть начальной длины борозд оставлять без рыхления, на следующей 1/3 части длины борозды рыхление проводить на глубину 40см и на оставшейся 1/3 концевой части рыхление проводить на глубину 60см. Глубокое рыхление рекомендуется проводить один раз в 3-4 года.

ПОЛЕВЫЕ ЭКСПЕРИМЕНТЫ

Спасибо за внимание!!!